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Solidification of a double-diffusive liquid from a vertical wall in a rectangular cavity 
is investigated using both mathematical and physical modelling. A two-dimensional 
mathematical model is developed to simulate the process of solidification in a two- 
component liquid containing a denser solute. Observations on the solidification 
behaviour of aqueous sodium carbonate solutions are used to verify the results of the 
mathematical analysis. The theory and experiments provide a clear picture of the 
role of double-diffusion in producing vertical compositional and density stratification 
in an initially homogeneous liquid during solidification. The development of 
horizontally oriented convection cells in the stratified liquid is correlated with the 
magnitude of the destabilizing lateral temperature difference across the liquid 
region. 

1. Introduction 
Double-diffusive phenomena have characteristically been associated with con- 

vective processes in oceanic environments. The adjective ' double-diffusive ' refers to 
the fact that these fluid motions are generated by the interactive effect of gradients 
in two diffusing components, each of which contributes to the buoyancy force acting 
on the fluid. 

One type of double-diffusive convective instability, observed both experimentally 
and in certain oceanic situations, occurs when a fluid exhibiting a stable vertical 
salinity gradient is subject to  a destabilizing temperature gradient. If the 
destabilizing gradient is horizontal, the resultant fluid motion occurs in a series of 
low-aspect-ratio convection cells, stacked vertically upon one another. Double- 
diffusive instabilities of this type are thought to influence the development of layered 
or ' step-like ' vertical salinity and temperature gradients observed in certain regions 
of the oceans. 

For comprehensive review of the literature on double-diffusive phenomena the 
reader is referred to the excellent papers by Turner (1974, 1979) and Huppert & 
Turner (1981). The following discussion is therefore restricted to an overview of 
previous investigations of double-diffusion that are concerned with lateral heating/ 
cooling of a stable, vertical salinity gradient. 

The behaviour of a stratified fluid contained between two rigid, impermeable 
vertical boundaries, subject to horizontal temperature gradients, has been studied 
both theoretically and experimentally. Thorpe, Hutt  & Soulsby (1969), Hart (1971) 
and Chen (1974) use stability analysis to  determine the critical Rayleigh number 
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R, for the onset of double-diffusive layered convection and to  provide information on 
the general characteristics of the resultant flow patterns. Physical modelling of 
double-diffusive systems using salt-water and sugar-salt solutions gives results in 
general agreement with the stability analyses, indicating a value for R, on the order 
of 1 . 5 ~  lo4 (Chen 1974; Chen, Briggs & Wirtz 1971; Wirtz, Briggs & Chen 1972). 

Wirtz et al. (1972) use numerical methods to  calculate the double-diffusive flow 
patterns for the specific case of a narrow cavity. The results show that a t  Rayleigh 
numbers above critical, a series of double-diffusive layers are generated simul- 
taneously along the vertical boundaries and propagate across the width of the gap. 
The layered structure that develops consists of horizontal convection cells separated 
by diffusive interfaces, and is characterized by ' stepwise ' temperature and salinity 
profiles. 

A related phenomenon, which is relevant to problems in geology, metallurgy and 
crystal growth, concerns the development of double-diffusive instabilities in the 
presence of a moving solidification/melting front. This situation differs from the 
classical case of double-diffusion (in the oceans) in that the liquid is initially uniform 
in composition and the solute gradients and associated convective instabilities in the 
liquid develop as a result of the solidification process. 

Chen & Turner (1980), Huppert & Turner (1980) and Turner (1980) conducted 
experiments with salt-water and salt-sugar systems to determine the effect of 
crystallization on double-diffusion in simulations of mineral layering in igneous 
intrusions and of melting of icebergs. These investigative experiments encompass a 
wide range of heating and cooling configurations but consider only the situation of 
a liquid with a pre-existing (linear) salinity stratification. 

McBirney (1980), Turner & Gustafson (1981) and McBirney, Baker & Nilson (1985) 
extended this physical modelling to address the problem of crystallization from a 
homogeneous fluid. For the experimental systems investigated, the solute-rich liquid 
produced upon solidification is less dense and ascends along the solid/liquid interface 
to the top of the cavity, creating a region with a stable, vertical concentration 
gradient. The lateral temperature gradient produces a series of double-diffusive 
convective layers within this region of the liquid, which are similar to those observed 
in double-diffusion experiments between vertical, impermeable boundaries. 

Previous studies of solidification in double-diffusive systems, involving both 
uniform and non-uniform initial solute distributions, have mainly been restricted to 
experimental investigations. To the best of our knowledge there has been no attempt 
to apply numerical methods to the study of horizontal solidification in these systems, 
although these techniques have been used successfully in the analysis of vertical 
solidification problems (McFadden et al. 1984 ; Coriell, Cordes & Boettinger 1980 ; 
Brown, Chang & Adornato 1984). Furthermore, none of the existing investigations 
have been concerned with solidification that produces a denser, solute-rich liquid. 

In  this paper we present the results of both numerical and physical modelling of 
horizontal solidification in a double-diffusive system. During the early stages of 
solidification, the analysis focuses on the process by which concentration gradients 
develop in an initially homogeneous liquid. As solidification progresses and the 
magnitude of these gradients increases, the emphasis is on the role of double-diffusive 
phenomena in altering the transport processes and solidification behaviour of the 
system. 

The solidification experiments with aqueous sodium carbonate solutions are 
described in $2. The mathematical formulation and results of the numerical 
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FIGURE 1. Schematic diagram of the experimental apparatus used for the study of the soldification 
behaviour of sodium carbonate solutions. (1) Plexiglas cavity of inner dimensions 5 x 5 x 3.5 cm, 
(2) 1.28 cm thick Plexiglas based and removable lid, (3) 0.75 cm thick copper sidewalls, (4) tub- 
ing embedded in sideplates for circulation of coolant, (5) variable-flow-rate circulation pumps, (6) 
cold-temperature reservoir (methanol), (7) adjustable-temperature refrigeration unit, (8) 
hot/room - temperature reservoir (water), (9) immersion heater, (10) schematic location of 
thermocouples along vertical walls (also on cold wall). 

calculations are presented and compared to the experiments in $3.  In  $4 the results 
of the previous sections are used to analyse the mechanisms by which double- 
diffusive instabilities develop and propagate through the system. 

2. Experimental results 
The role of double-diffusion in controlling transport processes during solidification 

is investigated experimentally using aqueous solutions of sodium carbonate. A 
schematic diagram of the experimental apparatus is shown in figure 1 .  It consists of 
a Plexiglas box (5  em x 5 em x 3.5 cm) fitted with copper sidewalls and 1.28 cm thick 
insulated Plexiglas lid and base designed to approach the conditions of the ideal 
(perfectly thermally insulating) boundaries assumed in the theoretical repre- 
sentation. The limited dimensions of the container (5  em) ensure laminar flow 
conditions, making it possible to compare the calculated and experimental results, 
without requiring that the numerical calculations involve the use of a complex 
turbulent-flow model. 

Precooled methanol a t  a temperature of -20 "C and preheated water circulate 
through tubing embedded in the cold and hot walls, respectively. Thermocouples 
located a t  three elevations along the copper plates indicated that the inner surfaces 
of the cold and hot walls were maintained a t  approximately constant temperatures 
of - 10 and + 15 "C ( + 2  "C) respectively during the experiments. The apparatus is 
surrounded by 8 em thick Styrofoam insulation which is removed for observation of 
the solid/liquid interface and flow field. The experiments have been restricted to 
solutions containing less than 6 wt % sodium carbonate (eutectic composition). For 
these concentrations, ice is the solid phase forming throughout the majority of 
solidification and the solute-rich liquid has a higher density than the bulk liquid. 

14 FLM 187 
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Liquid 

FIGURE 2 (a-c). For caption see facing page. 

Figure 2 (a-e) shows photographs taken during the solidification of a 2 wt Yo 
sodium carbonate solution. A small amount of dye was injected into the liquid before 
each photograph to reveal the flow field. During the initial stages of solidification the 
liquid circulates in a single convection cell and the solid/liquid interface has almost 
a constant slope (figure 2a)  with the maximum width of the solidified region 
occurring a t  the base. 
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FIGURE 2. Photographs and accompanying schematic interpretations of the solidification of a 
2 wt % Na,CO, solution showing the evolution of the flow patterns and the position of the solid/ 
liquid interface a t  a series of times after the beginning of solidification. The direction of 
solidification is from right to left and the solid phase forming is ice (primarily). ( a )  At this early 
stage (10 min) the liquid circulates in a single thermally driven convection cell and the solid/liquid 
interface slopes out near the base where the thermal boundary layer is thickest. ( b )  After 30 min 
a horizontal double-diffusive convection layer has formed beneath the main thermal convection 
cell, rotating in the same direction, but less vigorously than the overlying cell. (c) After 40 min two 
shallow, double-diffusive layers each - 0.6 cm high, have formed at the base. The solid/liquid 
interface is more nearly vertical in the lower region adjacent to these layers, reflecting the less 
vigorous circulation characteristic of the lower region. ( d )  After 1 h and 15 min the accumulation 
of solute-rich dense liquid at the base of the cavity creates stagnant regions above and below the 
double-diffusive convection layers. These regions mark the sights where additional horizontal 
layers will form as the cavity continues to solidify. ( e )  After 2 h and 30 min the cavity is close to 
72 % solidified and the original thermal convection cell is restricted to the uppermost portion of the 
liquid. There is evidence of between 6 and 8 shallow double-diffusive convection cells beneath this 
thermal cell, in which the convective motion is comparatively slow. 

The solute-enriched liquid produced upon solidification is transported along the 
crystal/liquid interface to the base of the cavity where, owing to its relatively high 
density, it collects to form a separate, stable layer beneath the main convection cell. 
The fractionated fluid released to the boundary layer becomes increasingly enriched 
in solute, and therefore denser, as solidification progresses. The enriched liquid 
accumulates a t  the base in a manner analogous to the ' box-filling ' process described 

14-2 
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by Baines & Turner (1969), creating a density-stabilized region with a pronounced 
vertical solute concentration gradient. 

Within 30 minutes the combination of the vertical (stable) solute gradient and the 
lateral temperature gradient, causes a low-aspect-ratio horizontal convection cell 
(< 1 cm high) to form within this density-stratified region, rotating in the same 
direction as, but more slowly than, the upper cell (figure 2 b ) .  

The vertical compositional boundary layer along the crystals supplies denser 
liquid to the base of the cavity, causing continued growth of the lower, stratified zone 
at the expense of the main convection cell. As the boundary layer descends through 
the density-stratified liquid at  the base of the cavity, the outer portions are observed 
to ‘spill off’ horizontally into the interior a t  roughly their own density levels, thereby 
enhancing the density stratification. The primary channels along which the 
boundary-layer fluid is transported into the interior occur at  the cavity base and 
along the horizontal boundaries between the two cells (figure 2 b) .  

With continued solidification, additional double-diffusive cells are generated at  
the top and bottom of the stratified zone at the base of the cavity in regions where 
the accumulation of solute-enriched liquid is most pronounced. In figure 2 ( c ) ,  for 
example, taken after 40 minutes, two horizontal convection cells are visible near the 
base of the cavity and the main thermal cell has become restricted to the upper 
approximately 75% of the liquid region. Figure 2 ( d ,  e )  shows photographs of the 
system at approximately 40 and 70% solidification, showing two or three, and (at 
least) six cells, respectively, within the density-stratified liquid at  the base. 

The form and behaviour of these secondary cells is similar to the convective 
patterns observed during lateral heating of an established salinity gradient (e.g. Chen 
1974). The current system differs from these classical examples of double-diffusion in 
that the vertical solute gradient, which develops as a result of solidification, is 
nonlinear, and varies in magnitude and extent during the course of solidification. The 
nature of the compositional boundary layer along the solidlliquid interface controls 
the distribution of solute in the lower zone, which in turn determines the manner 
in which additional double-diffusive cells develop. In  contrast to the experiments 
between impermeable boundaries, the double-diffusive cells are generated in a 
sequential fashion, on top of, and along the boundaries between, existing cells. 

In the aqueous system investigated here, the macroscopic shape of the solidlliquid 
boundary is controlled primarily by convective heat transfer in the solution in the 
vicinity of the crystallization front. As the cavity is solidified and the density- 
stratified layer is established at  the base, the circulation patterns in the liquid 
change, producing a continuous evolution in the thermal conditions perpendicular to 
the moving phase boundary. In the density-stratified portion of the liquid at  the base 
of the cavity, the vigour of convective motion is reduced in comparison to that in 
the overlying homogeneous portion of the liquid. As a result, the dominant mode of 
lateral heat transfer in the lower region where the cells have formed is by conduction, 
and the solidification interface is nearly vertical. In  the upper regions of the cavity, 
heat transfer is controlled by the vigorous thermal convection and the solidlliquid 
interface develops a shape that is typical of phase change in the presence of natural 
convection in the melt (Szekely & Chabbra 1970; Albert & O’Neill 1985; Morgan 
1981). 

The surface of the ice block remained smooth throughout most of the solidification 
interval, with little or no evidence of the onset of morphological instability, or the 
development of a pronounced dendritic or ‘ mushy ’ region. However, closer 
examination of the ice surface revealed a very tightly packed array of fine-scale 
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dendrites in a zone approximately 1-2 mm thick (porosity estimated at less than 
5 % ,  dendrite arm spacings on the order of 0.1 mm). The development of the 
morphological instability was only evident during the later stages of solidification. 

The nature of the ice front observed in these experiments can be compared to  what 
has been observed previously when solutions with initial compositions on the sodium 
carbonate-rich side of the eutectic (hypereutectic) are solidified under similar 
conditions (Chen & Turner 1980; McBirney 1980; McBirney et al. 1985; Thompson 
1986; Turner & Gustafson 1981). I n  these experiments with hypereutectic 
solidification, a dendritic region on the order of 1 em wide, characterized by dendrite 
arm spacings on the order of 0.1-2 mm (depending on the solidification conditions), 
is present between the (100%) liquid and solid (hydrated sodium carbonate) 
phase. 

The existence of a mushy region is neglected in the theoretical analysis of $3, owing 
to the additional complexity and prohibitive computation time that is involved 
in incorporating a third solution region into the mathematical formulation. 
Furthermore, the assumption of a 'planar' phase boundary used to  develop the 
mathematical formulation is consistent with the restricted width and low porosity of 
the mushy zone observed experimentally with hypereutectic solidification. 

Figure 3 (a ,  b )  shows photographs of a similar experiment in which the heat input 
into the vertical wall was negligible. The main convection cell recedes higher into the 
cavity with time, but the horizontal cellular motion, which was observed in the lower 
regions of the cavity during the previous experiments, is lacking. Solute-rich liquid 
continues to  accumulate a t  the base of the cavity, creating a stable vertical solute 
gradient in the lower portion of the liquid, but the lateral temperature difference is 
insufficient to initiate double-diffusive motions. As a result, a nearly stagnant, 
density-stratified region develops below the thermal convection cell, increasing in 
vertical extent as solidification progresses. 

The fluid circulation patterns that develop within the density-stratified region a t  
the base of the cavity are controlled primarily by the thermal conditions a t  the 
heated wall. When the heat input is negligible, as in the second experiment described 
above, the density stratification stabilizes the liquid and convective motion is 
essentially damped. In  contrast, when the left wall is heated, the stratified portion 
of the liquid circulates in slowly rotating horizontal layers or cells. 

The behaviour of the solidifying sodium carbonate solutions is consistent with 
previous analytical and experimental studies of the stability of a linearly salinity- 
stratified layer of fluid that is heated or cooled through an impermeable vertical wall 
(Thorpe et al. 1969; Chen et al. 1971; Hart 1971). The experiments and stability 
analyses indicate that there exists a critical thermal Rayleigh number, based on the 
temperature difference between the hot and cold vertical walls, beyond which viscous 
forces are overcome, and the initially stagnant fluid convects spontaneously in a 
series of horizontal ' double-diffusive layers '. 

The depth of these layers h is observed to scale with I, the distance a fluid element 
can rise in a given vertical salinity gradient (as/&) to become 'neutrally buoyant ': 

z is the dimensionless vertical distance z'/L, where L is the characteristic cavity 
dimension; AT is the reference temperature drop; and Ps and PT are given in 
table 1 .  A prime denotes a dimensional quantity. 
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FIGURE 3. Photographs of a similar experiment in which the pumping rate through heated 
boundary was reduced. The horizontal thermal gradients are insufficient to destabilize the stable 
vertical solute gradient (R,  < R,) and the stratified zone remains essentially stagnant. (a )  After 
25 min the stagnant region occupies the lower - 0.25% of the liquid region, but there is no 
evidence of double-diffusive layers at the base. ( b )  After 45 min additional dense liquid has 
accumulated beneath the thermal convection cell, but the fluid motion in the lower region is almost 
negligible. 

Here the solute concentration 
8’ - S R  S=- - - -  

AS ’ 
with SR the reference solute concentration and A S  the reference composition 
change. 

Using I as the vertical lengthscale to evaluate the thermal Rayleigh number, the 
critical value a t  the onset of spontaneous cell generation was determined to be 
1.5 x 104+_2500 (Chen el al. 1971 ; Chen 1974; Hart 1971 ; Thorpe et al. 1969). 

In  the experiments with aqueous sodium carbonate solutions described in this 
section, double-diffusive layering in the stratified zone occurs only when the 
horizontal thermal gradient exceeds a minimum value, suggesting that the system 
is governed by stability criteria analagous to those for double-diffusion between 
impermeable boundaries. For the first experiment, the thermal gradient exceeded 
the critical value and double-diffusive layers were initiated. I n  contrast, during the 
second experiment, the magnitude of the thermal Rayleigh number was apparently 
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Definition 

density 

thermal diffusivity 

thermal conductivity 

latent heat of fusion 
kinematic viscosity 
solute diffusivity 
coefficient of thermal expansion 
coefficient of solutal expansion 

slope of liquidus line 

distribution coefficient 
characteristic length (average cell size) 

lengthscale for secondary cells 

Prandtl number 

Lewis number 

Thermal Rayleigh number 

Solutal Rayleigh number 

Stefan number 

Ratio of thermal diffusivities of solid and 
liquid 

Ratio of thermal conductivities of solid 
and liquid 

Buoyancy ratio 

Critical Rayleigh number at  onset of flow 
instability 

Value for Na,CO,-H,O System 

1.0 g (cm3)-' (15 wt % Na,CO,) 
1.16 g (cm3-' (0 wt % Na,CO,) 

1.5 x cmz/s (liquid) 
1.5 x cmz/s (solid) 

1 x 
1 x 

76.0 cal/g 
0.93 x lo-' cmz/s 
1.5 x cmz/s 

cal/cm s "C (liquid) 
cal/cm s "C (solid) 

3.0 x 10-4 OC-1 

8.0 x 10-3 wt %-I 

-0.33 T / w t  Yo 
0 
5 cm 

0.5 to 1.0 cm 
(advanced stage) (intermediate) 

6.0 

107.0 

5 x 105 

1 x 106 

5.0 

1 .o 

1 .o 

0.5 

1.5 x 104 

TABLE 1 .  Physical constants and dimensionless quantities 

below the critical value RL necessary for convective instability, and the fluid 
remained stagnant. 

These observations are consistent with the conclusions of Huppert & Turner (1980) 
concerning the formation of double-diffusive layers adjacent to a vertical ice wall 
melting into a linearly stratified layer of salt water. The authors demonstrated that 
the formation and behaviour of double-diffusive layers a t  the ice front could be 
analysed in a manner analagous to that used for heated or cooled impermeable 
boundaries. The primary difference between their experiments and those involving 
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impermeable walls is that the melting ice wall is immersed in a relatively wide tank 
for which the appropriate characteristic horizontal temperature drop is 

AT, = T, - Twall. 

where T, is the far-field liquid temperature and T,,,, is the temperature of the 
melting ice surface. For both the ice surface and impermeable walls, the measured 
thickness of the convecting layers h, for a wide range of the thermal Rayleigh number 
R,, has been shown to scale with 1 according to:  

h = c x l  

(Chen et al. 1971; Wirtz et al. 1972; Huppert & Turner 1980). The value of c is 
observed to decrease from approximately 1 to 0.66 as the thermal Rayleigh number 
is increased beyond R, to 5 x lo5, whereafter c remains essentially constant. 

In the current experiments, the vertical salinity gradient in the bulk is neither 
constant with time nor necessarily linear in space, so that layer size h varies with 
height and changes throughout the course of solidification. As a result it is difficult 
to define a straightforward relationship between the layer size and R, without 
extensive measurements of T, and X,. For this reason, there has been no effort in this 
investigation to systematically determine cell size variation or to define the stability 
criterion for the generation of convecting layers. However, the system studied here 
is very similar to that used by Huppert & Turner (1980), so that it is reasonable to 
apply the same principles established by these authors, in an approximate manner, 
to the analysis of the current set of experiments. 

3. Analysis 
The experiments of the previous section describe the progressive density 

stratification of a uniform fluid, and the concurrent development of double-diffusive 
instabilities within the liquid, which occur during horizontal solidification. In  the 
following we develop a two-dimensional mathematical model of the solidification 
process for a binary, double-diffusive liquid in an enclosed cavity. The purpose of 
the modelling is to provide a quantitative description of the behaviour of the 
experimental system that will provide insight into the mechanism of generation of 
the double-diffusive instabilities. 

The geometry chosen for the analysis is shown in figure 4. A binary fluid, initially 
homogeneous in composition and temperature, is confined to a two-dimensional 
square cavity and solidified directionally. The bounding walls of the cavity are 
impermeable and the top and base are thermally insulated. 

At a time t = 0, where t = ~ ’ K / L ~  = t ’ / ~  is the dimensionless time ( K  being 
thermal diffusivity), the vertical boundaries are raised/lowered to  temperatures 
of OH/8,, and solidification proceeds inwards from the cold wall of the cavity. Here 
8 = (T’ -To) /AT is the dimensional temperature, To being the initial temperature. 
The solid phase differs in composition from the bulk liquid, causing the rejected 
solute to be concentrated in the liquid in the vicinity of the solid/liquid interface. 
The lateral temperature and solute concentration gradients that develop during 
solidification contribute to a thermosolutal buoyancy force which produces 
convective motions in the liquid. The density of the liquid is given, as a function of 
both solute concentration and temperature, by a linear equation of state of the 
form 

p = pO{l -PT(T’-II’O)+Ps(X’-XO)>. 
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o, = - 1.0 

6s so - = - = o  
62 sz 

FIGURE 4. Schematic diagram of the system upon which the mathematical model is based. A 
homogeneous binary fluid is confined to a two-dimensional square cavity with the boundary 
conditions as shown, and solidified against the cold vertical boundary. 

The dimensionless form of the equations governing conservation of energy, 
mass and momentum in a constant-property fluid, subject to  the Boussinesq 
approximation are 

(2) 
1 Dw 
r~ Dt 
-- - - V2~+(RTV0i-RsVX,), 

Here 

V2Y = -0, 

solid region, 

(3) 

(4) 



420 

The dimensionless horizontal distance is defined as : 
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and 

X’ x=- in the liquid region, 
X(Z> t )  

X ’ - X { Z ,  t }  
L - X { z ,  t }  

X =  in the solid region. 

The dimensionless vorticity w = w’L2/K;  and ‘Y = y / K  is the dimensionless stream 
function. The dimensionless horizonal velocity u = u’L/K and the dimensionless 
vertical velocity v = v’h/K = v/S. The Lewis number Le and the thermal Rayleigh 
number R, are given in table 1 ; and 6 = X’(t, z ) /L is the relative width of liquid. 

In the solid phase, diffusion of solute is assumed negligible and conservation of 
energy requires 

- = yV2P (6) 
aos 
at 

where superscripts s, 1 refer to solid and liquid phases respectively, and y is the ratio 
of thermal diffusivities of solid and liquid K I / K , .  

The boundary conditions for a square cavity of dimension L are 

ve:, = vs, = = = o (0 < < L ;  = o , ~ ) ,  (7) 

0s = -1.0 (x = L ;  0 < z < L) ,  (9, 

where x and x refer to horizontal and vertical directions 
boundary (x = X ( z ,  t ) } ,  conservation of energy and mass 

as 
at 

(KVSS, - VO!,.) f = St -, 

as 
at 

VS, f = L e S * ( k , - l ) - - ,  

respectively. At the phase 
require that 

where f = 1 + (a8/az)z is the shape factor, and k, is the distribution coefficient. The 
particular form off used here implies that the vertical variation of temperature and 
equilibrium solute concentration at  the solid-liquid boundary is small or that 

n,.US - n,-UT - 0, 

where nt is the tangent vector a t  the boundary. The use of this approximate 
expression for f is valid here because, although the interior of the fluid is thermally 
and solutally stratified, the vertical variations a t  the solid/liquid boundary are quite 
small (< 2 “C over the cavity height). A similar approach has been successfully 
adopted by previous authors examining solidification in binary alloys (Brown et al. 
1984). 

The interface temperature B* and solute concentration S* are related by the 
dimensionless slope of the liquidus m according to 

B* = O,,+mS*, (12) 

where Om, is the melting point of the pure solvent. 
This system of coupled, nonlinear equations and boundary conditions describes 
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transient phase change in two dimensions. Most finite-difference schemes for 
handling this class of transport-phenomena problem (simultaneous heat, mass and 
momentum transfer), are designed for rectangular computational grids, and are 
therefore poorly suited to handle an irregular interface such as the solid-liquid 
boundary. For this reason, the governing equations are rewritten in a new coordinate 
system in which the solution domain is represented in terms of a more tractable 
geometric shape. The solidification problem of interest here involves only a single 
moving phase boundary, so that the Landau boundary immobilization technique has 
been chosen (Saitoh 1978 ; Hsu, Sparrow & Patankar 1981 ; Ramachandran & Gupta 
1981 ; Gadgil & Gobin 1984; Sparrow, Patankar & Ramadhyani 1977 ; Ho & Viskanta 
1984). 

At each time-step, the irregularly shaped liquid and solid regions are transformed 
into rectangular domains for which specifying the boundary conditions is relatively 
straightforward. In  transformed space the horizontal coordinate x in the liquid, 

X* x=- 
X’(z ,  t )  ’ 

given in terms of the spatial coordinate in physical space (x*} and the width of the 
liquid region (X’}, ranges from 0 to 1 for all z and t .  The advantage to this approach 
is that the solid/liquid boundary in transformed space is stationary, and defined by 
the position x = 1 during any given time interval. 

In obtaining the final form of (2)-(6) and boundary conditions (7)-(12) in the 
adjusted coordinate system, a number of simplifying assumptions have been made. 
The first of these concerns the relative rates of solidification and convection. In 
systems with large (> 1) Stefan numbers (table l),  for which the interface velocity 
is slow relative to the fluid velocity, it  is possible to adopt the ‘quasi-stationary’ 
approximation. The use of this approximation implies that over a limited time 
interval, the effect of interface motion on the temperature, solute and flow fields in 
the melt is negligible. The terms containing aX’/at can be therefore eliminated from 
the governing equations when solving for the velocity, temperature and solute 
concentration within the melt and solid. Sparrow et al. (1977), Ho & Viskanta (1984), 
Ramachandran et al. (1981), and Hsu et al. (1981) have demonstrated that the quasi- 
stationary approximation is valid for most phase-change problems with natural 
convection a t  moderate and large Stefan numbers. 

The second assumption that has been made in the coordinate transformation is 
that the thickness of the melt region ( X ( z , t ) )  varies slowly with z ,  so that terms 
involving i3X/az in the transport equations can be neglected. Ramachandran et al. 
(1981) and Ho & Viskanta (1984), have shown that this simplification is valid in 
systems as long as the vertical heat transfer across the upper and/or lower surfaces 
of the liquid and solid regions is not extreme. In fact, these authors have successfully 
used the same system of transformed equations as presented above in the solution of 
phase-change problems characterized by substantial radiative and convective heat 
losses along the upper surface of the cavity. The use of the ‘interface-curvature’ 
approximation is clearly even more appropriate for the current problem, in which the 
thermally insulated upper and lower boundaries of the enclosure ensure minimal heat 
loss through those surfaces. 

The motivation for adopting this simplified form of the governing equations (with 
the ‘ quasi-stationary ’ and ‘ interface-curvature ’ approximations), is to reduce 
computation time and to ensure rapid convergence and stability in the solution 
procedure. The use of the quasi-stationary and interface-curvature approximations 
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for this particular moving-boundary problem is believed to be justified because of the 
magnitude of the Stefan number and the nature of the thermal boundary conditions 
at the horizontal boundaries. Select test cases of the numerical procedure, described 
elsewhere (Thompson 1986), have been used to verify the validity of these 
approximations as applied to  this particular phase-change system. 

The tranformed partial differential equations (2)-( 6) and boundary conditions 
(7)-( 12), are placed in finite-difference form using centred spatial derivatives for the 
diffusion terms, upwind differencing (Roache 1972) for the convective terms and 
forward time derivatives. The parabolic equations are solved implicitly using the 
standard Alternating-Direction-Implicit (ADI) technique, introduced by Peaceman 
& Rachford (1955), while the elliptic stream-function equation is solved iteratively 
using the method of Successive Overrelaxation (SOR) (Roache 1972). The 
nonlinearities in the convective terms and coupling between various equations and 
boundary conditions are handled iteratively. 

Iteration at  a specific time-step is continued until the maximum field residuals are 
reduced to  1 x lop3. Variable grid spacing in the horizontal direction has been used 
to  facilitate computation at high Lewis numbers and care has been taken to place 
four to five grid points within the estimated width of the concentration boundary 
layer. Further details of the numerical scheme, including test cases and a more 
detailed discussion of convergence, stability and computation time are provided 
elsewhere (Thompson 1986). 

The results presented in this section have been computed on the basis of the 
dimensionless quantities in table 2 which correspond to  the physical parameters of 
the sodium carbonate-water solutions used in the experiments. The plotted results 
are given in terms of dimensionless parameters and variables, in order that  they can 
be extrapolated to containers of any size (within the limits of the laminar flow 
regime), wall temperatures, etc., and to fluids with a range of physical parameters. 
The time comparisons are made in terms of a timescale 

7 - 1 x lo3 s - 136 min 

using the average height of the main thermal convection cell (3.5 em) as the 
lengthscale for the solidification process. 

Figure 5 (a-c) represents the stream function, solute concentration and tem- 
perature distributions within the cavity calculated on a 31 (2) by 51 (2) grid a t  a 
dimensionless time of 0.1 (13.6 min). During the early stages of solidification the fluid 
circulates in a single convection cell, driven primarily by the horizontal thermal 
gradients. The effect of the solute concentration on the liquid density is already 
apparent. The streamlines are concentrated in the region adjacent to the solid/liquid 
interface where the horizontal solute and temperature gradients have a reinforcing 
effect on the buoyancy force. 

The temperature distribution (figure 5 b )  is characterized by large temperature 
gradients near the vertical boundaries and a stable, thermally stratified, core region. 
The shape of the solid/liquid interface reflects the pattern of convective heat transfer 
in the liquid region with the width of the solidified region reaching a maximum a t  
the base where the thermal boundary layer is thickest. Convection is the primary 
mechanism responsible for the transport of rejected solute along the phase boundary 
towards the base of the cavity where the solute-rich liquid accumulates during 
solidification (figure 5 c ) .  

The vertical solute gradients, which result from this continued accumulation, 
contribute to the initiation of double-diffusive instabilities, which appear as multiple 
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FIQURE 5 .  Contour plots of the calculated ( a )  stream function, ( b )  temperature and (c) solute 
concentration at  a dimensionless time of 0.1 (13.6 min). The behaviour of the system at this stage 
is typical of solidification of a pure liquid, with the fluid motion confined to a single circulation 
loop. 

convection loops within the density-stratified region. The first instability is generated 
a t  t = 0.28 (38 min), in the lower-left corner, and propagates across the cavity to form 
a horizontal double-diffusive convection cell beneath the main thermal convection 
cell (figure 6a) .  Within the upper cell the solute concentration is nearly uniform 
(figure 6c)  and the isotherm distribution is typical of thermally driven natural 
convection in a pure liquid (figure 6 b ) .  In  contrast, the lower cell exhibits steep 
vertical concentration gradients and more-nearly vertical isotherms, suggestive of 
low-Rayleigh-number convection in shallow cavities (Simpkins & Dudderar 1981). 

At a dimensionless time of 0.3 there is evidence of the initiation of an additional 
double-diffusive instability between the main thermal cell and the low-aspect-ratio 
cell a t  the base. By t = 0.32 (43.5 min), two horizontal convection cells have become 
established beneath the main cell, with the horizontal boundaries between the cells 
tilting up slightly in the direction of the heated boundary (figure 7a) .  Convection 
within the upper cell is more vigorous, exhibiting maximum velocities two to three 
times higher than in the lower cells. At this time the solute stratification extends 
throughout the lower one-third of the cavity (figure 7 6) and the convective mixing 
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FIGURE 6. Contour plots of the calculated (a )  stream function, ( b )  temperature and (c) solute 
concentration a t  a dimensionless time of 0.28 (38.2 min). The denser, solute-rich liquid accumulates 
near the base and the combination of the vertical solute gradient and the horizontal temperature 
gradient in the lower portion of the liquid leads to the formation of a double-diffusive layer beneath 
the thermal convection loop. 

between the cells is limited. The main mechanism of heat and mass transfer between 
the separate convecting regions occurs by diffusion across the horizontal interfaces 
which separate them. 

At a dimensionless time of 0.48 (65.2 min), the cavity is approximately 35% 
solidified (figure 8a)  and the original thermal convection cell is restricted to  the upper 
half of the cavity. Three to four slowly rotating double-diffusive cells are discernible 
within the lower half of the liquid where the vertical solute gradient is steepest (figure 
8 b ) .  The circulation is slightly more vigorous within the lowest two double-diffusive 
cells than in the central region of the liquid, apparently owing to the presence of the 
(solid) cavity base. The cellular motion near the base acts to perturb the isotherms 
slightly (figure 8 c )  and initiate the development of a vertically layered solute 
distribution (figure 8d  ). 

The influence of the double-diffusive layering on the development of vertical 
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FIGURE 7 .  Contour plots of the calculated (a )  stream function, ( b )  velocity vector, (c) temperature 
and (d )  solute concentration at  a dimensionless time of 0.32 (43.5 min). Two low-aspect-ratio 
double-diffusive convection layers have formed a t  the base of the cavity, exhibiting the same 
direction of circulation, but lower convective velocities, than the overlying thermal-convection 
cell. 

stratification in the interior of the cavity is evident from the vertical profiles of 
dimensionless temperature, solute concentration and ' density ', defined as 

R,S-RTB 
p =  1 -  1 R T e  

of figure 9(a-c). At the time the first double-diffusive layer forms at  the base of the 
cavity, the overall vertical thermal and compositional zoning in the bulk liquid has 
become well established (figure 9 a  - corresponding to contour plots of figure 6). The 
solute concentration in the liquid of the overlying thermally convecting region is 
approximately uniform, but increases dramatically at the level of the first front and 
is nearly uniform within the double-diffusive layer. In  contrast, the upper region is 
characterized by a pronounced thermal gradient, with temperature increasing 
gradually from base to roof of the cavity, as is typically observed in thermal natural 
convection in enclosures. 
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FIGURE 8. Contour plots of the calculated (a )  stream function, (6) velocity vector, (c) temperature 
and ( d )  solute concentration a t  a dimensionless time of 0.48 (65.2 min). The thermal-convection cell 
is restricted to the upper half of the liquid region and there is evidence of between two and four 
double-diffusive layers forming near the base. The convection is slightly more vigorous in the 
lowest two layers than in the stagnant region in the central portion of the cavity. 

After two double-diffusive layers develop (figure 9 b  - corresponding to figure 7) ,  
convection of the fluid above the first front is somewhat damped and the vertical 
thermal gradient in that region is correspondingly reduced. In  the lower region, 
where the double-diffusive layers form, the vertical profiles show the step-like 
stratification characteristics commonly associated with thermohaline circulation. 
The profiles of figure 9 ( c )  exhibit similar trends, with t8he thermal cell occupying the 
upper half of the liquid region and four double-diffusive layers present below the first 
front. 

The shape of the solid/liquid boundary, a t  this time, reflects the competition 
between the compositional dependence of the melting temperature and the pattern 
of convecture heat transfer along the phase boundary. The maximum rate of 
solidification no longer occurs a t  the base of the cavity, but at a height that 
corresponds roughly to the base of the main convection cell, where heat transfer 
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FIGURE 9. Vertical profiles of dimensionless solute concentration, temperature and liquid 'density ' 
a t  5 = 0.5 calculated at  dimensionless times: ( a )  0.28, ( b )  0.32 and ( c )  0.48. -, temperature; 

, solute concentration; ----, density. 

away from the interface is most efficient. Below this level, the increase in solute 
concentration and associated decrease in melting temperature results in a decreased 
solidification rate which is reflected in the shape of the phase boundary (figure 8). 

The timescale associated with cell formation is much less than that associated with 
the solidification process, making it necessary to  employ small time-steps in the 
calculations (At = 0.0001). For this reason, it has only been possible to compute flow 
fields for a limited portion of the solidification process. Nonetheless, there is very 
good agreement between the observed flow patterns and solidification behaviour and 
the predictions of the numerical calculations for the time period that has been 
investigated. 
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Order -0 f - magnitud e analysis 
Analysis of the velocity and length scales appropriate for natural convection 
provides additional insight into the expected behaviour of the system and allows the 
generalization of the findings reported here to a broader range of operating 
parameters. During the early stages of solidification, the behaviour of the system is 
similar to what is observed for thermally driven buoyancy flows. The relevant 
lengthscales appropriate for the experimental system are (Patterson & Imberger 
1980) - 

L S, - - - 0.15 cm, q, 
8, - v0.5S, - 0.5 em, 

8, - ~57c-O.~~ 8, - 0.05 cm; 

where subscripts T ,  V ,  c refer to thermal, viscous and concentration, respectively. 
The vertical boundary-layer flow has a characteristic velocity of order 

KO.5  K1 

V - 1 - 18 cm/min 
L 

( L  = 5 em, R, = 1 x lo6, K = 1.5 x lW3 cm2/s), while the horizontal intrusion layers 
a t  the base and top of the cavity of thickness 

V S T  I/ - __ - 14 cm/min. 
A 

have velocities of order 

Once the double-diffusive cells are established near the base of the cavity, the 
convective behaviour within each cell is similar to what would be predicted for an 
individual (low-aspect-ratio) cavity of height h ( <  L).  Assuming a lengthscale of 
0.5 cm (the average cell height: e.g. figure 2 e ) ,  appropriate for the advanced stages 
of solidification, the reduced velocities ( V *  and U * )  estimated for the double- 
diffusive cellular convection are 

V* - 2 cm/min, U *  - 1.2 cm/min. 

In  addition, the (experimental) convective velocities have been estimated from the 
rate of propagation of dye within the vertical and horizontal boundary layers. Table 
111 lists the observed and calculated maximum convective velocities for various 
times during solidification. The comparisons have been based on a velocity scale 
of: 

19 - 3.0 x lop3 cm/s - 0.18 cm/min. 

Again, the characteristic length used for scaling is the average height of the 
double-diffusive cells forming during the intermediate and advanced stages of 
solidification (0.5 em). There is relatively good agreement between observed and 
calculated convective velocities as well as with the order-of-magnitude estimates 
outlined above. The calculated and experimental velocities for motion in the double- 
diffusive layers are also consistent with the results of Wirtz et al. (1972), who report 
velocities between 0.6 and 2.2 cm/min, increasing as R, is increased beyond R,. 
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Calculated 
Estimated 

Time (experimental) Dimensionless Dimensional 

0.2 10-15 cm/min 86.1 15.5 cm/min 

5-8 cm/min 28.9 5.2 cm/min 
(upper cell) 

0.3 1-2 cm/min 12.5 2.25 cm/min 
(lower cell) 

3-6 cm/min 20.8 3.75 cm/min 
(upper cell) 

(lower cell) 
0.4 < 1 cm/min 3.6 0.5 cm/min 

TABLE 2. Comparison of experimental and calculated convective velocities 

The horizontal destabilizing force, which is responsible for the initiation of the 
layering (oc AT), is roughly uniform throughout the depth of the tank. In  contrast 
the magnitude of the vertical stabilizing force, which is proportional to ax/&, varies 
with height and is negligible within the homogeneous liquid of the upper convection 
cell. The lengthscale I, the thermal Rayleigh number based on that lengthscale, and 
the characteristic flow velocity therefore differ for the upper cell and the lower 
stratified region. As a result, as table 2 indicates, convection in the overlying thermal 
convection cell is characterized by somewhat higher velocities than evidenced in the 
horizontal double-diffusive layers. 

In  studies of double-diffusive layering in stratified solutions (Wirtz et al. 1972; 
Chen et al. 1972; Chen 1974; Huppert & Turner 1980) the lengthscale is defined in 
terms of the initial vertical salinity (solute) gradient in the fluid layer. For the 
current analysis of the experimental results, however, it is more appropriate to use 
the estimated solute gradient within the stratified zone at  the base, to define the 
lengthscale h for that  region of the liquid during a specific stage of solidification. 

Furthermore, due to the relative proximity of the two ‘vertical ’ solid surfaces, we 
have chosen to evaluate the horizontal thermal driving force in terms of the 
temperature difference between the heated wall and the solidification front (as used 
commonly for the analysis of layering in stratified solutions). For the stage portrayed 
in figure 2(e ) ,  in which the temperature and solute concentration a t  the interface 
approach the eutectic, we use as the horizontal temperature difference : 

and assume a difference in solute concentration within this stratified zone, of 4 wt YO 
(between the initial and eutectic compositions) over a vertical distance of 3.5 em. 
This leads to an estimated vertical solute concentration gradient of 1.14 wt %/em 
and an estimated value of the lengthscale h of 0.56cm. For comparison, the 
measured cell heights 1 (figure B e )  are between 0.4 and 0.6 cm, which agree with the 
values of (Z/h) determined previously for impermeable boundaries (Chen 1974 ; 
Huppert & Turner 1981). 
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4. Discussion and conclusions 
We have presented both computed and experimental results on double-diffusive 

phenomena arising during horizontal solidification of a binary, aqueous solution. The 
modelling describes the manner in which vertical concentration gradients develop in 
a homogeneous liquid as a result of convective redistribution of a denser solute 
rejected along a moving, solid/liquid interface. 

The convective patterns that develop in the stratified liquid region are governed 
by the interaction of the horizontal thermal gradient with this vertical solute 
stratification. For values of the (horizontal) thermal Rayleigh number below a 
critical value R,, the portion of the liquid region over which the solute stratification 
extends remains essentially stagnant throughout solidification. For solidification a t  
higher Rayleigh numbers, the lateral temperature gradient is sufficient to destabilize 
the solute stratification, causing the formation of low-aspect-ratio (horizontal) 
double-diffusive cells within the growing, density-stratified region. 

The average height of the double-diffusive cells is determined by the relative 
magnitude of the horizontal destabilizing and the (local) vertical stabilizing 
buoyancy forces (equation (13)), with larger horizontal thermal gradients resulting 
in the formation of fewer, and larger, double-diffusive cells within the same depth of 
fluid. If the thermal gradient is very large, relative to the vertical solute gradient, the 
density stratification will be suppressed owing to the tendency of the solute-rich 
liquid to remix with the homogeneous liquid of the thermal convection cell. 

Although the general characteristics of cellular convection in this system appear 
to be governed by the same principles as control thermohaline convection between 
impermeable boundaries, the time-dependent behaviour of the system is somewhat 
more complex. The aspect ratio of the liquid region and the vertical extent and 
magnitude of the density stratification are continuously changing, so that the 
secondary double-diffusive cells are generated in a sequential fashion (rather than 
simultaneously), both above and below existing cells. Furthermore, the boundary- 
layer motion, which is known to have only a secondary influence on thermohalinc 
convection, controls the manner in which the solute is transported from the growing 
crystals and redistributed within the interior. Therefore, the conditions along the 
solid/liquid boundary, including the rate of solidification, the nature of the interface 
and the horizontal gradients, influence the time-dependent behaviour of the 
system. 

The preceeding analysis has focused upon the development of double-diffusive 
instabilities in an aqueous system, but the results can be considered in the broader 
context of solidification of multi-component magmatic systems, liquid metal alloys, 
and binary and ternary semiconductor materials. In all of these, the potential exists 
for the development of double-diffusive instabilities due to the interaction of 
temperature and solute concentration gradients that form as a result of solidification/ 
melting. It is hoped that the mathematical modelling presented here can be extended 
to determine the conditions under which double-diffusive phenomena of this type 
may be important. 

Although it  is premature to speculate on the role of double-diffusive phenomena in 
these systems, it is possible to gain some insight into their expected behaviour by 
comparing the values of the relevant physical parameters to those of the aqueous 
systems investigated here. Generally speaking, the onset of cellular convection is 
favoured by low Lewis numbers ( -  lo2) and strong solutal buoyancy effects (small 
f, large ps), (Chen 1974; Thorpe et al. 1969; Hart 1971). 
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The value of the solutal expansion coefficient (ps), is dependent on the specific 
alloy or system under consideration. In  metallic alloys, for example, Ps can be as 
large as -4 x (Mo in steel) (Fujii, Poirer & 
Flemings 1979) compared with the value of 8 x wt %-I appropriate for the 
aqueous sodium carbonate system. It is therefore feasible that the buoyancy ratio r 
characteristic of certain metals processing operations falls in the range for which 
double-diffusive instabilities may be generated. 

I n  contrast, the Lewis number is on the order of 103-105 for metallic liquids, and 
even larger for the common chemical components in complex magmatic liquids. It 
would appear that the effect of an increased Lewis number would be to reduce the 
width of the concentration boundary layer and possibly to  suppress the development 
of the vertical stratification through its influence on the boundary-layer motion. The 
present analysis, however, assumes a planar solid/liquid interface, a condition that 
is not likely to be strictly applicable to many actual solidification systems. I n  
contrast, most magmatic and metallic systems are characterized by a dendritic or 
‘mushy’ region between the liquid and solid phases. The distance over which solute 
segregation occurs in the vicinity of the phase boundary in these systems is therefore 
substantially larger than the width of the compositional boundary layer predicted 
for a planar crystal front. It is possible that this would offset the influence of the 
increased Lewis number. This suggests that, under certain operating conditions, 
these systems will develop significant (vertical) solute stratification which can lead 
to  the generation of double-diffusive instabilities and/or the formation of stagnant 
regions in the liquid. 

Unfortunately, there has been little effort, until recently, to investigate double- 
diffusive processes in actual solidification processing operations and the available 
experimental data on the physical properties of these systems are limited. However, 
there is experimental evidence that this type of phenomenon may be important in 
systems other than the aqueous solutions considered here. For example, Hebditch & 
Hunt (1974), and Fisher & Hunt (1979) report experimental results on the horizontal 
solidification of Pb-Sn, Sn-Pb and Sn-Zn alloys, in which they determine the spatial 
distribution of solute in the solid and liquid phases a t  various stages of solidification. 

Their results show the presence of pronounced vertical solute stratification within 
the quenched liquid phase, which is reflected in the compositional inhomogeneities in 
the solidified product as well as the shape of the solid/liquid interface. For the case 
of an Sn alloy containing 5 wt YO Pb, the denser solute-enriched liquid accumulated 
a t  the base of the cavity, whereas for Sn in Pb and Zn in Sn, the solute was lighter 
and accumulated in the liquid near the roof of the cavity. Unfortunately i t  is not 
possible to  determine from their data whether the density-stratified liquid remained 
stagnant or developed into a series of double-diffusive convection regions of the type 
observed in the aqueous solution considered here. However, it is clear that, owing to 
the double-diffusive properties of these alloys, horizontal solidification resulted in 
transformation of the homogeneous liquid into a stably stratified liquid with 
pronounced vertical compositional gradients. 

We can conclude that the double-diffusive nature of the binary systems 
investigated here has a controlling influence on flow patterns, and heat and mass 
transfer in the liquid phase during horizontal solidification. Furthermore, it is likely 
that similar double-diffusive phenomena may occur during solidification of other 
non-aqueous solutions in which the liquid density varies with solute concentration. 
In materials processing operations these double-diffusive interactions can be 
expected to influence the solidificationlcrystallization process through their effect on 

wt %-l (S, Si in steel) to  2 x 



432 M .  E .  Thompson and J .  Szekely 

heat transfer and solute redistribution in the vicinity of the solid/liquid interface, 
and therefore will be important in determining the compositional and textural 
homogeneity of the solidified product. 
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